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a b s t r a c t

In this paper, free vibration of beams, annular plates, and rectangular plates with free

boundaries are analyzed by using the discrete singular convolution (DSC). A novel

method to apply the free boundary conditions is proposed. Detailed derivations are

given. To validate the proposed method, eight examples, including the free vibrations of

kernels, the regularized Shannon’s kernel and the non-regularized Lagrange’s delta

sequence kernel, are tested. DSC results are compared with either analytical solutions

or/and differential quadrature (DQ) data. It is demonstrated that the proposed method

to incorporate the free boundary conditions is simple to use and can yield accurate

frequency data for beams with a free end and plates with free edges. Thus, the proposed

method for applying the boundary conditions extends the application range of the DSC.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Beams and plates are basic structural elements in engineering structures, thus are of great significance to aerospace,
mechanical, and civil engineering. In 1973, Leissa [1] attempted to present comprehensive and accurate analytical results for the
free vibration of beams and rectangular plate. Six cases exist for the beams and 21 cases exist for the rectangular plates, which
involve the possible combinations of simply supported (S), clamped (C), and free (F) edge conditions. As analytical methods often
fail or become too cumbersome to use, numerical simulation is one of the major approaches in engineering practice. Therefore, the
analytical results [1] have been served as the references to validate various numerical methods.

More recently, the discrete singular convolution (DSC), proposed by Wei [2], has emerged as a local spectral method to
combine the accuracy of global methods with the flexibility of local methods. The DSC has been shown a very promising
approach for the vibration analysis of plates [3].

The discrete singular convolution proposed for the computer realization of singular convolutions [2,4]. The mathematical
foundation of the DSC is the theory of distributions and the theory of wavelets. The DSC algorithm has been realized in both
collocation and Galerkin formulations [5]. The method can handle complex geometry and boundary conditions in many
applications, including the successful applications in solving some mechanical problems [6]. For example, the vibration and
buckling of beams, the free vibration of Kirchhoff and Mindlin plates, the free vibration of conical and thick shallow shells under
various combinations of boundary conditions [3,5,7–16], especially, the challenge problems of vibration analyses of plates with
irregular internal supports [10] and vibrating at higher-order modes [13–15]. Recently, the applications of DSC were extended by
ll rights reserved.
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Civalek [17–19] to nonlinear analysis of thin rectangular plates on Winkler–Pasternak elastic foundations [17], free vibration of
laminated composite conical and cylindrical shells [18], and three-dimensional vibration, buckling and bending analyses of thick
rectangular plates [19]. More recently, the DSC together with mode superposition (MS) approaches successfully predicted the
discrete high-frequency forced vibration of thin plates with either simply supported or clamped edges [20].

It is seen that methods of symmetric extension and anti-symmetric extension are successfully used for applying the clamped
and simply supported boundary conditions in the DSC analysis. Very accurate results, including the high frequencies, are obtained
for free vibration problems of thin rectangular plates with different combinations of simply supported, clamped and transversely
supported with non-uniform elastic rotational restraint (E) edges [3]. Although methods of symmetric extension and anti-
symmetric extension are simple and very effective to eliminate the fictitious points outside the solution domain; however, it
cannot be used effectively for applying the free boundary conditions. Recently, the method of matched interface and boundary
(MIB) was proposed by Wei and his co-workers [11,12] to overcome the difficulty of implementing free boundary conditions of
beams and rectangular plates in the DSC algorithm. Accurate results are presented for the first 10 frequencies of the beams with
free edges [11] and for the first five frequencies of the rectangular plates with free edges. Different combinations of M (the number
of layers of fictitious values), L (the stencil width), and N (the number of grid points) are studied in the convergence analysis.
Although the first 10 frequencies of the beams with free edges are very accurate; however, the accuracy of rectangular plates with
free edges is not as high as that of rectangular plates without a free edges [3,12]. Besides, no information on the accuracy of the
high-order frequencies is presented in [11,12].

It is also noticed that the method of matched interface and boundary (MIB) is not as simple as the methods of the
symmetric extension and anti-symmetric extension. Therefore, the objective of the present work is to explore an
alternative simple way for applying the free boundary conditions in the DSC algorithm. A simple way for treatment of the
free boundary conditions is proposed. Formulations and solution procedures are worked out in detail. To validate
the proposed method, eight examples, including the free vibration of beams with free ends, rectangular plates with a free
edge, and challenging problems of annular plates with inner edge free and small ratios of inner radius to outer radius, and
rectangular plates with all edges free, are analyzed by using the DSC. Two kernels, the regularized Shannon’s kernel and the
non-regularized Lagrange’s delta sequence kernel, are tested. DSC results are compared with either analytical solutions or/
and recalculated data by using the differential quadrature method (DQM) [21-22] or differential quadrature element
method (DQEM) [23]. Some conclusions are drawn based on the results reported herein.

2. Theory

2.1. Free vibration of beams

For an Euler–Bernoulli beam with length L and cross-sectional area A, the governing differential equation for free
vibration is given by

EI
d4wðxÞ

dx4
¼ rAo2wðxÞ (1)

where E and I are modulus of elasticity and the second moment area about the neutral axis, wðxÞ is the deflection of the
beam, x is the Cartesian coordinate in the neutral axis of the beam, r is the mass density of the beam, and o is the circular
frequency, respectively.

The boundary conditions are
(1)
 Clamped end (C):

w¼
dw

dx
¼ 0 (2a,b)

Simply supported end (S):
(2)
w¼
d2w

dx2
¼ 0 (3a,b)

Free end (F):
(3)
d2w

dx2
¼

d3w

dx3
¼ 0 (4a,b)
2.2. Free vibration of rectangular plates

For an isotropic rectangular Kirchhoff plate with length a, width b and thickness t, the governing differential equation
for free vibration is given by

q4wðx; yÞ

qx4
þ2

q4wðx; yÞ

qx2@y2
þ

q4wðx; yÞ

qy4
¼
rto2wðx; yÞ

D
(5)
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where x and y are the Cartesian coordinates in the middle plane of the plate, wðx; yÞ is the deflection of the plate, r is the
mass density, D¼ Et3=½12ð1�n2Þ� is the flexural rigidity of the plate, E and n are the modulus of elasticity and Poisson’s
ratio, and o is the circular frequency, respectively.

The boundary conditions are
(1)
 Clamped edge (C):

w¼
qw

qx
¼ 0 ðx¼ 0 or aÞ; (6a,b)

w¼
qw

qy
¼ 0 ðy¼ 0 or bÞ (7a,b)

Simply-supported edge (S):
(2)
w¼
q2w

qx2
þn q

2w

qy2
¼ 0 ðx¼ 0 or aÞ (8a,b)

w¼
q2w

qy2
þn q

2w

qx2
¼ 0 ðy¼ 0 or bÞ (9a,b)

Free edge (F):
(3)
q2w

qx2
þn q

2w

qy2
¼

q3w

qx3
þð2�nÞ q

3w

qxqy2
¼ 0 ðx¼ 0 or aÞ (10a,b)

q2w

qy2
þn q

2w

qx2
¼

q3w

qy3
þð2�nÞ q

3w

qyqx2
¼ 0 ðy¼ 0 or bÞ (11a,b)
2.3. Free vibration of annular plates

For an isotropic annular plate with inner radius b, outer radius a, and thickness t, the governing differential equation for
axi-symmetric free vibration is given by

d4wðrÞ

dr4
þ

2

r

d3wðrÞ

dr3
�

1

r2

d2wðrÞ

dr2
þ

1

r3

dwðrÞ

dr
¼
rto2

D
w rð Þ (12)

where r is the polar coordinate in the middle plane of the plate, wðrÞ is the deflection of the plate, r is the mass density,
D¼ Et3=½12ð1�n2Þ� is the flexural rigidity of the plate, E and n are the modulus of elasticity and Poisson’s ratio, and o is the
circular frequency, respectively.

The boundary conditions are
(1)
 Clamped edge (C):

wðrÞ ¼
dwðrÞ

dr
¼ 0 ðr¼ b or aÞ (13a,b)

Simply supported edge (S):
(2)
wðrÞ ¼
d2wðrÞ

dr2
þ
n
r

dwðrÞ

dr
¼ 0 ðr¼ b or aÞ (14a,b)

Free edge (F):
(3)
d2w

dr2
þn1

r

dw

dr

 !
¼

d3w

dr3
þ

1

r

d2w

dr2
�

1

r2

dw

dr

 !
¼ 0 ðr¼ b or aÞ (15a,b)
3. DSC and the solution procedures

The discrete singular convolution (DSC) is employed herein for free vibration analysis. In the DSC, a function wðxÞ and its
jth order derivative with respect to x are approximated via a discretized convolution, namely [5],

wðjÞðxÞ �
XM

k ¼ �M

dðjÞs;Dðx�xkÞwðxkÞ ðj¼ 0;1;2; . . .Þ (16)
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where 2Mþ1 is the computational bandwidth, xkðk¼�M;�Mþ1; . . . ;�1;0;1; . . . ;M�1;MÞ are uniformly distributed grid
points, and dðjÞs;Dðx�xkÞ is a collective symbol for the delta kernels of Dirichlet type and is given by

dðjÞa;dðx�xkÞ ¼
d

dx

� �j

da;dðx�xkÞ (17)

Although there are many DSC kernels available, two kernels are adopted in the present study, namely, the non-
regularized Lagrange’s delta sequence kernel (DSC-LK [3,5]) and the regularized Shannon’s kernel (DSC-RSK) [5]. The non-
regularized Lagrange’s delta sequence kernel, already discretized, is given by

dM;kðx�xkÞ ¼
LM;kðx�xkÞ for�brxrb
0 otherwise

for M¼ 1;2; . . .

�
(18)

where brLc (Lc is the length of beam, plate length or plate width), and LM;kðxÞ is the Lagrange interpolation defined by [3]

LM;kðxÞ ¼
YkþM

i ¼ k�M;iak

x�xi

xk�xi
ðMZ1Þ (19)

The regularized Shannon’s delta kernel is discretized by [5]

dD;dðx�xkÞ ¼
sin½pðx�xkÞ=D�
pðx�xkÞ=D

e�ðx�xkÞ
2=2s2

(20)

where D¼ Lc=ðN�1Þ is the grid spacing and N ðNZMþ1Þ the number of grid points.
The higher-order differentiation matrix elements, dðjÞa;dðxm�xkÞ, can be computed by

dðjÞa;dðxm�xkÞ ¼
d

dx

� �j

da;dðx�xkÞ

" #
x ¼ xm

(21)

Thus, one has

w0ð0Þ ¼wð1Þð0Þ �
XM

k ¼ �M

dð1Þs;Dðx�xkÞwðxkÞ ¼
XM

k ¼ �M

A0kwðxkÞ ¼
XM

k ¼ �M

A0kwk (22)

w00ð0Þ ¼wð2Þð0Þ �
XM

k ¼ �M

dð2Þs;Dðx�xkÞwðxkÞ ¼
XM

k ¼ �M

B0kwðxkÞ ¼
XM

k ¼ �M

B0kwk (23)

w
000

ð0Þ ¼wð3Þð0Þ �
XM

k ¼ �M

dð3Þs;Dðx�xkÞwðxkÞ ¼
XM

k ¼ �M

C0kwðxkÞ ¼
XM

k ¼ �M

C0kwk (24)

wIVð0Þ ¼wð4Þð0Þ �
XM

k ¼ �M

dð4Þs;Dðx�xkÞwðxkÞ ¼
XM

k ¼ �M

D0kwðxkÞ ¼
XM

k ¼ �M

D0kwk (25)

where the differentiation matrix elements, A0k;B0k;C0k;D0k, are called here the ‘‘weighting coefficients’’ of the first-,
second-, third- and fourth-order derivatives with respect to x, since they are exactly the corresponding weighting
coefficients at the middle point in the DQM if the non-regularized Lagrange’s delta sequence kernel is used. It was shown
earlier that the error of the DQM at the center point is the smallest with uniform grid spacing as compared with various
non-uniform grid spacing [21].

A complete numerical algorithm has to provide a scheme for handling various boundary conditions to eliminate
fictitious points. The Dirichlet boundary condition, w¼ 0, can be easily specified at the boundary. For beams, Eqs. (2b) and
(3b) can be applied by the method of symmetric or anti-symmetric extensions, respectively [3,5,6]. To apply the free
boundary conditions, a more general form based on the symmetric extension method with a slight modification is
proposed herein. Without loss of generality, using Taylor’s series expansion for wðxÞ and wð�xÞ at x0 ¼ 0 and retaining the
terms up to x3 yields

wð�xÞ ¼wðxÞþw0ð0Þð�2xÞþw
000

ð0Þð�x3=3Þ (26)

where x 2 ½�b;b�ðbrLcÞ. In general, x0a0. In such a case, just simply replace x in Eq. (26) by x�x0. Eq. (26) is to be used to
eliminate the fictitious points outside the solution domain with free boundaries.

For illustration, consider first the free boundary condition of a beam at its left end ðx¼ 0Þ. Since
A0ð�kÞ ¼ �A0k;B0ð�kÞ ¼ B0k;C0ð�kÞ ¼ �C0k;D0ð�kÞ ¼D0k; ðk¼ 1;2; . . . ;MÞ; thus, it is easy to show by substituting Eq. (26) into
Eqs. (22)–(25) that

w0ð0Þ ¼w0
0 ¼

XM
k ¼ �M

A0kwk ¼w0
0 (27)
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w00ð0Þ ¼w0
00 ¼

XM
k ¼ �M

B0kwk ¼
XM
k ¼ 0

Bkwkþw0
0
XM
k ¼ 1

B0kð�2xkÞþw
000

0

XM
k ¼ 1

B0kð�x3
k=3Þ ¼

XM
k ¼ 0

BkwkþBMþ1w0
0 þBMþ2w

000

0

(28)

w
000

ð0Þ ¼w
000

0 ¼
XM

k ¼ �M

C0kwk ¼w
000

0 (29)

wIVð0Þ ¼wIV
0 ¼

XM
k ¼ �M

D0kwk ¼
XM
k ¼ 0

Dkwkþw0
0
XM
k ¼ 1

D0kð�2xkÞþw
000

0

XM
k ¼ 1

D0kð�x3
k=3Þ ¼

XM
k ¼ 0

DkwkþDMþ1w0
0 þDMþ2w

000

0

(30)

where B0 ¼ B00, Bk ¼ 2B0kðk¼ 1;2; . . . ;MÞ, BMþ1 ¼�
PM

k ¼ 1 2B0kxk, BMþ2 ¼�
PM

k ¼ 1 B0kx3
k=3, D0 ¼D00, Dk ¼ 2D0k

ðk¼ 1;2; . . . ;MÞ, DMþ1 ¼�
PM

k ¼ 1 2D0kxk, DMþ2 ¼�
PM

k ¼ 1 D0kx3
k=3, respectively.

Since w
000

ð0Þ ¼ 0 at the free end, Eq. (26) is further reduced to

wð�xÞ ¼wðxÞþw0ð0Þð�2xÞ (31)

Eq. (31) is exactly the same expression as was proposed earlier by present authors [24]. Thus, equation w00ð0Þ ¼ 0 is used
to eliminate the remaining additional degree of freedom at the boundary point, i.e., w0

0 . Applying w00ð0Þ ¼ 0 and using
Eq. (28) together with w

000

ð0Þ ¼ 0 yield

w0
0 ¼ �

XM
k ¼ 0

ðBk=BMþ1Þwk (32)

For simplicity, assume the total number of the grid points N equals to Mþ1. After applying the boundary conditions, the
governing differential equation for free vibration of F–C or F–S beams in terms of DSC is

XM�1

j ¼ 0

Dijwj ¼
rAo2wi

EI
ði¼ 0;1;2; . . . ;M�1Þ (33)

where the over-bar means that the corresponding coefficients have been modified by eliminating all fictitious points and
additional degrees of freedom. For example, Dij ¼Dij�DiðMþ1ÞBi=BMþ1 for the F–C beam.

Solving Eq. (33) by a standard eigenvalue solver yields the frequencies of the beam.
Consider next the free boundary condition of annular plates at inner boundary ðr¼ bÞ. Since x0a0, then x¼ r�b should

be used in Eq. (26). For convenience, Eq. (15b) can be re-written to the following equivalent form by considering Eq. (15a),

d2w

dr2
þ

rn
1þn

d3w

dr3

 !
r ¼ b

¼ 0 (34)

Substituting Eqs. (27)–(29) into Eqs. (15a) and (34) results

n
b
þBMþ1

� �
w0
0 þBMþ2w

000

0 ¼�
XM
k ¼ 0

Bkwk (35)

BMþ1w0
0 þ

nb

1þn
þBMþ2

� �
w
000

0 ¼�
XM
k ¼ 0

Bkwk (36)

Solving Eqs. (35) and (36) simultaneously yields

w0
0 ¼ �

nb

1þn

� �
=

(
nb

1þn
þBMþ2

� �
n
b
þBMþ1

� �
�BMþ1BMþ2

)XM
k ¼ 0

Bkwk

w
000

0 ¼ �
n
b

� �
=

(
nb

1þn
þBMþ2

� �
n
b
þBMþ1

� �
�BMþ1BMþ2

)XM
k ¼ 0

Bkwk

8>>>>><
>>>>>:

(37)

For annular plates, one of the clamped boundary conditions, Eq. (13b), can be applied by the method of symmetric
extension [3,5,6]. To apply one of the simply supported boundary conditions at r¼ a, Eq. (14b), Eq. (31) is used. One has

n
a
þBMþ1

� �
wM
0 ¼ �

XM
k ¼ 0

Bkwk (38)

It should be mentioned that one should replace x with x¼ r�a in Eq. (31), since x0 ¼ a. Solving Eq. (38) yields

wM
0 ¼ �1=

n
a
þBMþ1

� �XM
k ¼ 0

Bkwk (39)
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After applying the boundary conditions, the governing differential equation for free vibration of F–C and F–S annular
plates in terms of DSC is

XM�1

j ¼ 0

Dijwjþ
2

ri

XM�1

j ¼ 0

C ijwj�
1

r2
i

XM�1

j ¼ 0

Bijwjþ
1

r3
i

XM�1

j ¼ 0

Aijwj ¼
rto2wi

D
ði¼ 0;1;2; . . . ;M�1Þ (40)

where the over-bar means that the corresponding coefficients have been modified to eliminate all fictitious points and
additional degrees of freedom.

Solving Eq. (40) by a standard eigenvalue solver yields the frequencies of the annular plates.
Consider last the rectangular plates. The method of symmetric extension [3,5,6] is used for the clamped edges and the

method of anti-symmetric extension [3,5,6] is used for the simply supported edges. For the free boundary, Eq. (26) is used
to eliminate all degrees of freedom at fictitious points. Consider both ends free. After eliminating all degrees of freedom at
fictitious points, following general expressions can be obtained, namely,

w0ðxiÞ ¼wi
0 �

XM
k ¼ 0

AikwkþAiðMþ1Þw0
0 þAiðMþ2Þw

000

0þAiðMþ3ÞwM
0 þAiðMþ4Þw

000

M ¼
XMþ4

k ¼ 0

Aikwk (41)

w00ðxiÞ ¼wi
00 �

XM
k ¼ 0

BikwkþBiðMþ1Þw0
0 þBiðMþ2Þw

000

0þBiðMþ3ÞwM
0 þBiðMþ4Þw

000

M ¼
XMþ4

k ¼ 0

Bikwk (42)

w
000

ðxiÞ ¼w
000

i �
XM
k ¼ 0

CikwkþCiðMþ1Þw0
0 þCiðMþ2Þw

000

0þCiðMþ3ÞwM
0 þCiðMþ4Þw

000

M ¼
XMþ4

k ¼ 0

Cikwk (43)

wIVðxiÞ ¼wIV
i �

XM
k ¼ 0

DikwkþDiðMþ1Þw0
0 þDiðMþ2Þw

000

0þDiðMþ3ÞwM
0 þDiðMþ4Þw

000

M ¼
XMþ4

k ¼ 0

Dikwk ði¼ 0;1; . . . ;MÞ (44)

It seems at first that the programming might be complicated since boundary points have three degrees of freedom
while all inner grid points have only one degree of freedom. A relative simple way can alleviate this difficulty. Let Nx;Ny be
the total number of grid points in the x and y directions, schematically shown in Fig. 1. Note that M¼Nx�1 or Ny�1. For
simplifying the programming, 4Nxþ4Ny more grid points, denoted by shaded circles in Fig. 1 and with one degree of
freedom (either wx

0 , or w
000

x , or wy
0 or w

000

y ) each, are introduced. Since each grid point has one degree of freedom, namely, w

for the Nx � Ny grid points located on the plate, wx
0 for the first 2Ny additional grid points close to the right-hand side, w

000

x

for the remaining 2Ny additional grid points on the right-hand side, wy
0 for the 2Nx additional grid points on the top of the

plate close to the edge, and w
000

y for the remaining 2Nx additional grid points on the top of the plate, thus the programming
in two dimensions is still not difficult. It should be pointed out that the location of the additional points is unimportant.
y

Nx
1

Ny

a

b

x

Fig. 1. Sketch of a rectangular plate with uniform grid points (M+1=Nx=Ny=5).
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In terms of the DSC, the governing differential equation for free vibration at all grid points can be expressed as

XMþ4

k ¼ 0

Dx
ikwklþ2

XMþ4

j ¼ 0

XMþ4

k ¼ 0

Bx
ijB

y
lkwjkþ

XMþ4

k ¼ 0

Dy
lkwik ¼

rto2wil

D
ði¼ 0;1;2; . . . ;M; l¼ 0;1;2; . . . ;MÞ (45)

where Dx
ij;D

y
ij;B

x
ij;B

y
ij (i¼ 0;1; . . . ;M; j¼ 0;1; . . . ;M;Mþ1;Mþ2) are the ‘‘weighting coefficients’’ of the fourth-order

derivatives with respect to x or y, and the ‘‘weighting coefficients’’ of the second-order derivatives with respect to x or
y, calculated by using Eqs. (44) and (42) with Nx ¼Ny ¼Mþ1; wij are either values of the deflection w at grid point
ijði¼ 0;1; . . . ;M; j¼ 0;1; . . . ;MÞ, or its first derivative with respective to x or y at the boundary grid point
ijði¼Mþ1;Mþ2; j¼Mþ1;Mþ2Þ, or its third derivative with respective to x or y at the boundary grid point
ijði¼Mþ3;Mþ4; j¼Mþ3;Mþ4Þ, respectively.

It should be mentioned that only equations at inner grid points are necessary if all four edges are the combinations of
clamped (C) or/and simply supported (S) boundary conditions. For rectangular plate with all edge clamped (CCCC), for
example, Eq. (45) can be re-written by

XM�1

k ¼ 1

Dx
ikwklþ2

XM�1

j ¼ 1

XM�1

k ¼ 1

Bx
ijB

y
lkwjkþ

XM�1

k ¼ 1

Dy
lkwik ¼

rto2wil

D
ði¼ 1;2; . . . ;M�1; l¼ 1;2; . . . ;M�1Þ (46)

If one free boundary is involved, e.g., CFCC plate (free at edge of y¼ 0), then Eq. (11) is used to eliminate the non-zero
wy
0 and w

000

y at the boundary points. In terms of the DSC, Eq. (11) at y¼ 0 becomes,

XMþ2

k ¼ 0;kaM

By
0kwikþn

XM�1

k ¼ 1

Bx
ikwk0 ¼ 0 ði¼ 1;2; . . . ;M�1Þ

XMþ2

k ¼ 0;kaM

Cy
0kwikþð2�nÞ

XM�1

j ¼ 1

XMþ2

k ¼ 0;kaM

Bx
ijA

y
0kwjk ¼ 0

8>>>>>><
>>>>>>:

(47)

For FFFF plates, Eqs. (10) and (11) can be expressed in a similar form of Eq. (47) at all four edges. After applying the
boundary conditions and eliminating the non-zero derivatives by using Eq. (47), Eq. (45) or Eq. (46) can be re-written in the
matrix form

½K�fwg ¼ lfwg (48)

Eq. (48) is a standard eigenvalue problem. Frequencies can be obtained by utilizing a standard eigensolver.

4. Results and discussions

For comparison purpose, frequency parameters are introduced. For beams, the frequency parameter O is defined by
O¼oL2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
rA=EI

p
. For annular plates, the frequency parameter O is defined by O¼oa2

ffiffiffiffiffiffiffiffiffiffiffi
rt=D

p
. For rectangular plates, the

frequency parameter l is defined by l¼oa2
ffiffiffiffiffiffiffiffiffi
r=D

p
.

The DSC with the proposed method for free boundary conditions is used to obtain the solutions of beams, annular
plates, and rectangular plates with free boundaries. Computer programs are written and eight examples are studied.
Results obtained by the DQM and existing data are also used for the comparisons.

Consider first the free vibration of Euler–Bernoulli beams with one or two free ends. Three combinations of boundary
conditions, namely, F–C, F–S and F–F, are investigated. Tables 1– 3 lists the first six frequency parameters by the DSC-LK
with uniform grid spacing and DQM with non-uniform grid spacing, together with the exact solutions by Leissa [1]. It is
seen that the accuracy of the solutions by DSC-LK is good. As is expected the DQM with M¼ 49 yields exactly the same
results as the exact solutions. Figs. 2 and 3 show the percentage relative error of all frequency parameters obtained by the
DSC-LK and DSC-RSK, where the percentage relative error is defined by

Relative errorð%Þ ¼ ðODSC�OexactÞ=Oexact � 100% (49)

From Figs. 2 and 3, it is seen that the percentage relative error is less than 1 up to first 40 modes for M¼ 49, the
maximum percent relative error is less than 10 by the DSC-LK and 4 by the DSC-RK for all modes. For lower frequencies,
there is no difference between data by DSC-LK and by DSC-RSK. For high frequencies, the DSC-RSK yields more accurate
results than the DSC-LK.
Table 1
Frequency parameter O for F-C beam (M=49).

Mode No 1 2 3 4 5 6

Leissa [1] 3.5160 22.034 61.697 120.902 199.860 298.556

DSC-LK 3.5157 22.027 61.665 120.815 199.677 298.229

DSC-RSK 3.5157 22.027 61.665 120.815 199.678 298.230

DQM 3.5160 22.034 61.697 120.902 199.860 298.556
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Table 2
Frequency parameter O for F-S beam (M=49).

Mode No 1 2 3 4 5 6

Leissa [1] 15.418 49.965 104.248 178.270 272.031 385.531

DSC-LK 15.414 49.941 104.176 178.112 271.737 385.042

DSC-RSK 15.414 49.941 104.176 178.112 271.738 385.043

DQM 15.418 49.965 104.248 178.270 272.031 385.531
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Fig. 2. Percentage relative errors of the DSC-LK results for beams of F–C, F–S and F–F (M=49).
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Fig. 3. Percentage relative errors of the DSC-RSK results for beams of F–C, F–S and F–F (M=49).

Table 3
Frequency parameter O for F-F beam (M=49).

Mode No 1 2 3 4 5 6

Leissa [1] 22.373 61.673 120.903 199.859 298.556 416.991

DSC-LK 22.359 61.607 120.726 199.487 297.883 415.894

DSC-RSK 22.359 61.607 120.726 199.487 297.885 415.897

DQM 22.373 61.673 120.903 199.859 298.556 416.991
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Fig. 4. Comparisons of the percentage relative errors of the DSC results with DQM results for F–C beam (M=49).
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Fig. 5. Comparisons of the percentage relative errors of the DSC results with DQM results for F–S beam (M=49).
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Figs. 4 and 5 show the comparisons of the percentage relative error of DSC-LK data with DQM results for the F–C beam
and F–S beam, respectively. The following non-uniform grids are used for obtaining results by the DQM,

xi ¼ Lð1�cos½ip=M�Þ=2 ði¼ 0;1; . . . ;MÞ (50)

It is seen that the percentage relative error of DQM results are small up to first 25 modes, but very large for the much
higher modes. It should be pointed out that for the first 25 modes, the percentage relative error of DQM results is smaller as
compared with that of DSC results, also clearly seen from Tables 1 and Table 2. This is expected since approximation is
introduced in the DSC, namely, in Eq. (26) or Eq. (31), for the treatment of the free boundary conditions. It may be
concluded that the proposed method for applying the free boundary is simple and convenient to use. The overall behavior
of the DSC seems retained, but the accuracy of the DSC results is not as high as in the cases of beams without a free
boundary.

Consider next the free vibration of isotropic annular plates with inner edge free and outer edge clamped or simply
supported. Relative small ratios of inner radius to outer radius, i.e., b=a¼ 0:1 and 0.3, are considered, since it is difficult to
obtain very accurate fundamental frequencies numerically for such cases. The following uniform grid spacing is used for
the DSC, namely,

ri ¼ bþ iDr ði¼ 0;1;2; . . . ;MÞ (51)

where Dr¼ ða�bÞ=M.
Tables 4 and 5 list the fundamental frequency parameters by the DSC-LK, together with the analytical solutions by

Leissa [25] and existing data by the optimized Rayleigh–Ritz method(ORRM) [26,27] and by the DQM [28,29]. It is seen that
relatively accurate results are obtained by the DSC for the first time. The larger the b=a, the more accuracy of the DSC
results.
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Table 4
Fundamental frequency parameter O for Annular plates (M=49, b/a=0.1, v=1/3).

Leissa [25] ORRM [26] ORRM [27] DQM [28] DQM [29] DSC-LK

F-C 10.15 10.13 9.996 13.41 10.13 9.78

F-S 4.86 4.890 4.857 7.138 4.890 4.611

Table 5
Fundamental frequency parameter O for Annular plates (M=49, b/a=0.3, v=1/3).

Leissa [25] ORRM [26] ORRM [27] DQM [28] DQM [29] DSC-LK

F-C 11.37 11.34 11.33 11.31 11.34 11.32

F-S 4.654 4.659 4.619 4.633 4.659 4.653
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Fig. 6. The percentage relative difference of the DSC results with DQM results for CCCC rectangular plate (M=32).
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Consider last the free vibration of isotropic rectangular Kirchhoff plates. Three combinations of boundary conditions,
i.e., CCCC, CFCC, and FFFF, are investigated. For clamped boundary condition, the method of symmetric extension [3] is
used, for the free boundary, the proposed method is used. Nx ¼Ny ¼Mþ1ðM¼ 32Þ are used in the analysis. Except for the
FFFF rectangular plate, the aspect ratio a=b¼ 1 is considered for illustrations. The following uniform grid spacing is used for
the DSC, namely,

xi ¼ iDa; yi ¼ iDb ði¼ 0;1;2; . . . ;MÞ (52)

where Da¼ a=M; Db¼ b=M.
For comparisons, the problems are also analyzed by the DQM or the new version of differential quadrature element

method (DQEM) [30]. For obtaining reliable solutions by the DQM or the DQEM, following non-uniform grid points are
used:

xi ¼ að1�cos½ip=M�Þ=2

yi ¼ bð1�cos½ip=M�Þ=2; ði¼ 0;1; . . . ;MÞ (53)

Figs. 6–8 show the comparisons of the percentage relative difference of DSC-LK data with results by using the DQM or
DQEM for the CCCC, CFCC and FFFF rectangular plates, respectively. The percentage relative difference is defined by

Relative differenceð%Þ ¼ ðODSC�ODQMÞ=ODQM � 100% (54)

It is seen that the percentage relative difference with results of the DQM (or DQEM) are small up to first 275 modes for
CCCC and CFCC plates. Fig. 8 shows only the difference up to the first 200 modes for the FFFF plate, since DQEM may yield
complex eigenvalues starting from the 245 mode. For DSC with proposed method to treat the free boundary conditions, all
eigenvalues are real number. It is observed from Fig. 8 and Table 8 that there is no much difference for the two kernels for
the lower order frequencies. Thus only the DSC-LK data are presented in Tables 6, 7 and 9. It is also observed that for CFCC
and FFFF plates, percentage relative difference is slightly larger than the CCCC plate. It is also seen from Tables 1 to 9 that
the accuracy of the DSC results for the plates is a little lower than that for the beams. In Tables 7 and 8, results obtained by
DSC with the matched interface and boundary (MIB) method [12] are also cited for comparisons. DSC-1 corresponds the
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Fig. 7. The percentage relative difference of the DSC results with DQM results for CFCC rectangular plate (M=32).

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0

Mode number

R
el

at
iv

e 
di

ff
er

en
ce

 (
%

)

DSC-LK (M=32)
DSC-RSK (M=32)

25 50 75 100 125 150 175 200

Fig. 8. The percentage relative difference of the DSC results with DQEM results for FFFF rectangular plate (M=32).

Table 6

Frequency parameter l for CCCC plate (a/b=1).

Mode No 1 2 3 4 5 6

Leissa [1] 35.992 73.413 73.413 108.27 131.64 132.24

DSC-LK 35.986 73.399 73.399 108.23 131.57 132.22

DQM 35.985 73.394 73.394 108.22 131.58 132.20

Table 7

Frequency parameter l for CFCC plate (a/b=1, v=0.3).

Mode No 1 2 3 4 5 6

Leissa [1] 24.020 40.039 63.493 76.761 80.713 116.80

DSC-LK 23.888 39.942 63.131 76.601 80.447 116.46

DSC-1 [12] 23.985 40.194 63.454 76.913 80.967 N/A

DSC-2 [12] 24.157 40.547 62.517 76.161 81.095 N/A

DQM 23.918 39.995 63.216 76.708 80.566 116.65
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adaptive grid (M¼ 4,N¼ 17), DSC-2 corresponds M¼ 2 and N¼ 13. Only 5 frequency parameters are reported in [12] and
no information on the high-order frequency. It should be pointed out that the results of lower modes by using the new
version of differential quadrature element method (DQEM) [30] are generally more accurate than the analytical data by
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Table 8

Frequency parameter l for FFFF plate (a/b=1, v=0.3).

Mode No 1 2 3 4 5 6

Leissa [1] 13.489 19.789 24.432 35.024 35.024 61.526

DSC-RSK 13.420 19.559 24.213 34.649 34.649 60.880

DSC-LK 13.419 19.559 24.212 34.646 34.646 60.878

DSC-1 [12] 13.505 19.597 24.335 34.361 34.943 N/A

DSC-2 [12] 13.080 19.595 24.119 34.547 36.270 N/A

DQEM [30] 13.468 19.596 24.270 34.802 34.802 61.257

Table 9

Frequency parameter l for FFFF plate (v=0.3).

Mode sequence a/b 2/5 2/3 1 3/2 5/2

1 Leissa [1] 3.4629 8.9459 13.489 20.128 21.643

DSC-LK 3.4268 8.8934 13.419 20.010 21.418

DQEM 3.4326 8.9313 13.468 20.095 21.454

DQM [31] 3.4339 9.3431 13.912 21.022 21.462

2 Leissa [1] 5.2881 9.6015 19.789 21.603 33.050

DSC-LK 5.2442 9.4993 19.559 21.374 32.777

DQEM 5.2782 9.5170 19.596 21.413 32.987

3 Leissa [1] 9.6220 20.735 24.432 46.454 60.137

DSC-LK 9.5143 20.503 24.212 46.133 59.465

DQEM 9.5406 20.598 24.270 46.347 59.629

4 Leissa [1] 11.437 22.353 35.024 50.293 71.484

DSC-LK 11.256 22.125 34.646 49.781 70.349

DQEM 11.328 22.182 34.801 49.910 70.802

5 Leissa [1] 18.793 25.867 35.024 58.201 117.45

DSC-LK 18.558 25.564 34.646 57.518 115.98

DQEM 18.627 25.650 34.801 57.714 116.42

6 Leissa [1] 19.100 29.973 61.526 67.494 119.38

DSC-LK 18.803 29.648 60.878 66.708 117.52

DQEM 18.923 29.791 61.093 67.029 118.23
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Leissa [1], since Leissa’s data are the upper bound solutions. From Tables 7 and 8, it is seen that the accuracy of the present
method for the free boundary condition is similar to the matched interface and boundary (MIB) method. From Tables 7–9,
it is also observed that the results in [12,31] are not always smaller or larger than Leissa’s data [1], some of the data are
smaller than Leissa’s data, while others are larger than Leissa’s data. This phenomenon is obviously caused by the way of
applying the boundary conditions. However, the results by DSC-LK and DQEM are consistently smaller than the
corresponding Leissa’s data, which are the upper bond results. Since Nx ¼Ny ¼ 33 are used in applying the DQEM for
comparison purpose, the DQEM results are believed to be the most accurate results presented in Tables 7–9 [30], thus are a
little smaller than Lessa’s data. The DSC-LK data are a little smaller than the DQEM results.

To well demonstrate the applicability of the proposed method further, five aspect ratios are considered for the FFFF
rectangular plate. From Table 9, it is seen by comparing the data with Leissa’s data and DQEM results that there is no much
difference in the accuracy of DSC-LK data for all five aspect ratios. Based on the results reported herein, one may conclude
that the proposed method for applying the free boundary is simple and convenient to use, and can yield reasonable
accurate results, although the accuracy of the results is not as high as in the cases of plates without a free boundary.

5. Conclusions

In this paper, free vibration of beams, annular plates and rectangular plates with free boundaries are analyzed by the
discrete singular convolution. A simple method to apply the free boundary conditions is proposed. Detailed derivations are
given. Eight examples, namely, free vibration of F–C, F–S and F–F beams, F–C and F–S annular plates, and CCCC, CFCC, and
FFFF rectangular plates, are analyzed by the DSC. Two kernels, the regularized Shannon’s kernel and the non-regularized
Lagrange’s delta sequence kernel, are tested. It is seen that there is no much difference between frequencies obtained by
the DSC with the two kernels for the lower order modes. Results also agree well with existing analytical and numerical
solutions and recalculated data by the differential quadrature (element) method.

Based on the results reported herein, one may conclude that the proposed method to incorporate the free boundary
conditions, although is simple to use, can yield reasonable accurate frequency data for beams and plates. The DSC’s
advantages, i.e., the accuracy of global methods and the flexibility of local methods, and accuracy for obtaining the
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higher-order modes, seem retained. Thus, the proposed method for applying the boundary conditions extends the
application range of the DSC.
Acknowledgement

The work is partially supported by the National Natural Science Foundation of China (10972105).

References

[1] A.W. Leissa, The free vibration of rectangular plates, Journal of Sound and Vibration 31 (3) (1973) 257–293.
[2] G.W. Wei, Discrete singular convolution for the solution of the Fokker–Planck equations, Journal of Chemical Physics 110 (1999) 8930–8942.
[3] C.H.W. Ng, Y.B. Zhao, G.W. Wei, Comparison of discrete singular convolution and generalized differential quadrature for the vibration of analysis of

rectangular plates, Computer Methods in Applied Mechanics and Engineering 193 (2004) 2483–2506.
[4] G.W. Wei, Wavelets generated by using discrete singular convolution kernels, Journal of Physics A: Mathematical and General 33 (2000) 8577–8596.
[5] G.W. Wei, Y.B. Zhao, Y. Xiang, The determination of natural frequencies of rectangular plates with mixed boundary conditions by discrete singular

convolution, International Journal of Mechanical Sciences 43 (2001) 1731–1746.
[6] G.W. Wei, A new algorithm for solving some mechanical problems, Computer Methods in Applied Mechanics and Engineering 190 (2001) 2017–2030.
[7] G.W. Wei, Discrete singular convolution for beam analysis, Engineering Structures 23 (2001) 1045–1053.
[8] Y.B. Zhao, G.W. Wei, DSC analysis of rectangular plates with non-uniform boundary conditions, Journal of Sound and Vibration 255 (2) (2005)

203–238.
[9] Y.S. Hou, G.W. Wei, Y. Xiang, DSC-Ritz method for the vibration analysis of Mindlin plates, International Journal for Numerical Methods in Engineering

62 (2005) 262–288.
[10] Y.B. Zhao, G.W. Wei, Y. Xiang, Plate vibration under irregular internal supports, International Journal of Solids and Structures 39 (2002) 1361–1383.
[11] S. Zhao, G.W. Wei, Y. Xiang, DSC analysis of free-edged beams by an iteratively matched boundary method, Journal of Sound and Vibration 284 (2005)

487–493.
[12] S.N. Yu, Y. Xiang, G.W. Wei, Matched interface and boundary (MIB) method for the vibration analysis of plates, Communications in Numerical

Methods in Engineering 25 (2009) 923–950.
[13] G.W. Wei, Y.B. Zhao, Y. Xiang, A novel approach for the analysis of high-frequency vibrations, Journal of Sound and Vibration 257 (2) (2002) 207–246.
[14] Y.B. Zhao, G.W. Wei, Y. Xiang, Discrete singular convolution for the prediction of high frequency vibration of plates, International Journal of Solids and

Structures 39 (2002) 65–88.
[15] C.W. Lim, Z.R. Li, G.W. Wei, DSC-Ritz method for the high frequency mode analysis of thick shallow shells, International Journal for Numerical Methods

in Engineering 62 (2005) 205–232.
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